If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-34x-152=0
a = 1; b = -34; c = -152;
Δ = b2-4ac
Δ = -342-4·1·(-152)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-42}{2*1}=\frac{-8}{2} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+42}{2*1}=\frac{76}{2} =38 $
| 360=40+273+x | | 13+3x=-8 | | 360=128+52+38+x | | 8(4=x)=68 | | X^3+3x^2+9x+8=0 | | F(X)=(x+5)² | | F(X)=(x+5² | | n+7=3+7 | | 9(2=3x)45 | | 9(2+3x=45 | | 9(x+2)=189 | | 6(v-3)-6=-7(-3v+4)-7v | | 6(v-3)-6=-7(-3v+4 | | 1.2x=-6.12 | | 4x-6x=-24x+3+6 | | -25=2(w-5)-7w | | 6x-32=98 | | -16-6=6(x+3) | | -16-6x=16(x+3) | | 5/7(t+7)=2/7=23 | | 5/7(t=+)=2/7=23 | | 6x+9=14.4 | | 3x÷8-2=8+5x÷2 | | 7v+6=-43v | | 5/7(t=7)=2/7t=23 | | 27x=26x+3 | | 2x=40=7x=10 | | 8y-4=40 | | 5/7(t=7)=2/7=23 | | 2x+5/6=12/36 | | 14x+6=15x+1 | | 20n=30n |